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Groups

Definition (Groups)
A group is defined as an ordered pair (G, ‹).

Associativity: (a ‹ b) ‹ c = a ‹ (b ‹ c).
Existence of an identity: a ‹ e = e ‹ a = a.
Existence of an inverse: a ‹ a´1 = a´1 ‹ a = e.



Examples of Groups

Example
Z: Group of all integers under addition
Zn: The group of modulos, t0, 1, 2, ..., n ´ 1u, under addition
(Zn)

ˆ: The group of integers relatively prime to n under
multiplication.
Sn: A group of permutations

Example (Dihedral Group)
Dn: Group consisting of rotations and reflections



Cyclic Groups

Definition
1 For a group H, some element x is a generator if H = tgk : k P Zu.
2 A group H is a cyclic group if there is some element x P H that is a

generator of group H, i.e, H = xxy

3 The order of an element X of a group H is defined as the least
positive integer k, such that xk = x ¨ x ¨ ... ¨ x (k times) = e, where e is
the identity of group H.(i.e. k = ord(x))

Example

(Z5)
ˆ = t1, 2, 3, 4u = t24, 21, 23, 22u



Subgroups

Definition (Subgroup)
Let G be a group. The subset H of G is a subgroup of G if H is
nonempty and H is closed under products and inverses (i.e. x, y P H
implies x´1 P H and xy P H). If H is a subgroup of G we shall write
H ď G.

Example
Consider Z4 = t0, 1, 2, 3u and the subgroup Z2 = t0, 2u.

Z2 is closed under the group operation of Z4. i.e. For any
a, b P Z2, a + b are still in Z2.
Inverses: Each element a P Z2 has an inverse in Z2.



Lattice of Subgroups

Definition
Lattices of the subgroups of G are positioned in the following manner:

Start at the bottom with the identity element e.
Place the subgroups in ascending order with the increase in their
orders until G is reached.
Connect two subgroup vertices if D subgroups between the two.

The lattice of subgroups of Z/30Z:

teu

Z/2Z

Z/10Z

Z/5Z
Z/3Z

Z/6Z

Z/30Z

Z/15Z



Fundamental Theorem of Cyclic Groups

Definition (Fundamental Theorem of Cyclic Groups)
For some cyclic group G = xgy of order n.

1 Every subgroup of G is cyclic.
2 If |G| = n, the order of all subgroups of G divides n.
3 @ k | n, the subgroup xgn/ky is a unique subgroup with order k.



Proof of the Fundamental Theorem of Cyclic Groups

Leading Questions and Steps Pt 1.

Q1. Can any subgroup H of G be written in the form xgdy?

Proof.
1 Let d be the smallest positive integer such that gd P H.
2 Suffices to show that for any gk P H, that k is a multiple of d.
3 Write k = dq + r so gk = (gd)q ¨ gr. Since gd, gk P H, gr P H, so r must

be 0 by our assumption.



Proof of the Fundamental Theorem of Cyclic Groups

Leading Questions and Steps Pt 2.

Q2. If H = xgdy, then does d | n?

Proof.
1 Because gn = e, and gkd P H, there exists an integer m such that

(gd)m = e.
2 Therefore, d | n and thus m | n.



Proof of the Fundamental Theorem of Cyclic Groups

Proof.
Q3. If H = xgly, what would the order of H be?

Proof.
Letting H = xgly, we have that the order of H is n

l = k and therefore
l = n

k .



Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)
Let n1, n2, . . . , nk P Z+ be greater than 1 and pairwise coprime. Consider:

x ” a1 (mod n1),
...

x ” ak (mod nk).

There exists an integer x that satisfies all these congruences simultaneously,
and any two solutions x, y are congruent modulo N, where N = n1n2 ¨ ¨ ¨ nk.

Theorem (Chinese Remainder Theorem Group Theory Version)

Let n = pα1
1 ˆ pα2

2 ˆ ¨ ¨ ¨ ˆ pαk
k , where α1,α2, . . . ,αk P Z+. Then,

1 Zn – Zpα1
1

ˆ ... ˆ Zp
αk
k

2 (Z/nZ)ˆ – (Z/pα1
1 Z)ˆ ˆ ... ˆ (Z/pαk

k Z)ˆ



Application 1 (Part I)

Theorem
The direct product Zn1 ˆ Zn2 ˆ ... ˆ Znk is a cyclic group if and only if the
numbers n1, n2, ..., nk are pairwise coprime.

Proof.
Backward:
Let m = lcm(n1, ..., nk). Since n1, ..., nk are pairwise coprime,
gcd(ni, nj) = 1 for all i ‰ j. Thus, m = n1 ¨ ... ¨ nk. Consider the
element g = (1, ..., 1) in Zn1 ˆ ... ˆ Znk. By CRT, g generates the
entire group, meaning every element in Zn1 ˆ ... ˆ Znk can be
expressed as a power of g. Thus, the group is cyclic.



Application 1 (Part II)

Theorem
The direct product Zn1 ˆ Zn2 ˆ ... ˆ Znk is a cyclic group if and only if the
numbers n1, n2, ..., nk are pairwise coprime.

Proof.
Forward:
Let g = (g1, ..., gk) be a generator of Zn1 ˆ ... ˆ Znk . Then the order
of g must be the order of the group, which is n1 ¨ ... ¨ nk. Suppose
D ni, nj such that gcd(ni, nj) = d ą 1. Then the order of the identity
element, is n1 ¨ ... ¨ nk/d ă n1 ¨ ... ¨ nk, contradicting that g is a
generator of the group. n1, ..., nk must be pairwise coprime.



Application 2

Theorem
(Z/nZ)ˆ is cyclic if and only if n P t1, 2, 4, pk, 2pku



Application 2: Part 1

Proposition

(Z/2nZ)ˆ is not cyclic for n ą 2.

Proof.
1 Find 2 subgroups of order 2
2 The first element:

(2k ´ 1)
2

” 1 (mod 2k)

= (2k)
2

´ 2(2k) + 1 ” 1 (mod 2k)

3 The second element:

(2k´1 ´ 1)
2

” 1 (mod 2k)

= (2k´1)
2

´ 2(2k´1) + 1 ” 1 (mod 2k)

= (22k´2) ´ 2k + 1 ” 1 (mod 2k)



Application 2: Part 2

Proposition

For all odd p P P, k P Z+, there exists a generator u P (Z/pkZ)ˆ. That is,
(Z/pkZ)ˆ is cyclic of order φ

(
pk).



Application 2: Final Part

Proof.
1 We know that by Chinese Remainder Theorem,

(Z/nZ)ˆ =
śk

i=0(Z/pki
i Z)ˆ.

2 So, All of the ’factors’ of (Z/nZ)ˆ must be cyclic as well by the
Fundamental Theorem of Cyclic Groups.

3 By our previous application, no two factors, (Z/pka
a Z)ˆ and

(Z/pkb
b Z)ˆ, for a, b ď i can have an even order, as it would imply

gcd(pka
a , pkb

b ) ą 1



Application 2: Final Part

Proof.
1 We know that (Z/pkZ)ˆ has size φ

(
pk) = (p ´ 1)(pk ´ 1) which is

an even number when p is odd.
2 This means that (Z/nZ)ˆ can have at most a factor of one

(Z/pkZ)ˆ multiplied with some (Z/2nZ)ˆ.
3 We can check that (Z/2Z)ˆ = 1, so it is trivial, while

(Z/4Z)ˆ = 1, 3 has an order of size 2. So the group is only cyclic
when n = 1, 2, 4, pk, 2pk.
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